Step of Proof: decidable__quotient_equal
12,41
postcript
pdf
Inference at
*
1
1
1
2
1
1
I
of proof for Lemma
decidable
quotient
equal
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
4.
f
:
T
T
5.
x
,
y
:
T
. (
(
x
f
y
))
E
(
x
,
y
)
6.
f
(
x
,
y
:
T
//
E
(
x
,
y
))
(
x
,
y
:
T
//
E
(
x
,
y
))
7.
u
:
x
,
y
:
T
//
E
(
x
,
y
)
8.
v
:
x
,
y
:
T
//
E
(
x
,
y
)
((
(
u
f
v
))
(
u
=
v
))
latex
by ((((((UseEqWitness Ax)
CollapseTHENM (D 8))
)
CollapseTHENM (D 7))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
7.
v1
:
T
C1:
8.
v2
:
T
C1:
9.
E
(
v1
,
v2
)
C1:
10.
u1
:
T
C1:
11.
u2
:
T
C1:
12.
E
(
u1
,
u2
)
C1:
Ax = Ax
C
.
Definitions
P
Q
,
P
&
Q
,
x
,
y
.
t
(
x
;
y
)
,
P
Q
,
t
T
,
x
f
y
,
P
Q
,
x
(
s1
,
s2
)
,
,
x
:
A
.
B
(
x
)
,
S
T
Lemmas
quotient
qinc
,
quotient
wf
,
assert
wf
,
iff
wf
,
squash
wf
origin